Super-dense packing of hydrogen molecules on a surface

0

Credit: Nature Chemistry (2022). DOI: 10.1038/s41557-022-01019-7

Hydrogen (H2) is currently discussed as an ideal energy carrier of renewable energies. Hydrogen has the highest gravimetric energy density of all chemical fuels (141 MJ/kg), which is three times higher than gasoline (46 MJ/kg). However, its low volumetric density restricts its widespread use in transportation applications—as current storage options require a lot of space.

At ambient temperature, hydrogen is a gas, and one kilogram of hydrogen occupies a volume of 12000 liters (12 cubic meters). In fuel-cell vehicles, hydrogen is stored under a very high pressure of 700 times the atmospheric pressure, which reduces the volume to 25 liters per kilogram of H2. Liquid hydrogen shows a higher density resulting in 14 liters per kilogram, but it requires extremely low temperatures since the boiling point of hydrogen is minus 253 °C.

Now a team of scientists from the Max Planck Institute for Intelligent Systems, the Technische Universität Dresden, the Friedrich-Alexander-Universität Erlangen-Nürnberg, and Oak Ridge National Laboratory has demonstrated that hydrogen condenses on a surface at a very low temperature near the H2 boiling point, forming a super-dense monolayer exceeding the density of liquid hydrogen by a factor of almost three, which reduces the volume to only 5 liters per kilogram H2.

The surprising result was that twice as many H2 molecules than atoms of the noble gas argon covered the surface, even though both have nearly the same size. To double the number of molecules per area, H2 molecules squeeze closely together, forming a super-dense layer.

The study by R. Balderas-Xicohténcatl et al. involved high-resolution cryo-adsorption experiments on highly-ordered mesoporous silica exhibiting well-defined pore and surface characteristics to determine the number of molecules condensed on the material’s surface.

Inelastic neutron scattering is an ideal tool to follow the formation of this two-dimensional hydrogen layer. For the first time, the existence of this super-dense hydrogen was confirmed in situ. This direct observation was only possible using the high-resolution neutron vibrational spectrometer VISION, which features an inelastic count rate more than 100 times greater than any similar available spectrometer.

Theoretical studies confirm the experimental observations of the unusually high hydrogen density in the adsorbed layer. The attractive forces at the surface were stronger than the repulsion between two hydrogen molecules resulting in a super-dense hydrogen packing on the mesoporous silica surface. The super-high density is a consequence of the high compressibility of hydrogen, which doesn’t have core electrons.

The formation of the super-dense hydrogen layer at low temperatures near the boiling point is of fundamental interest. It should be considered for quantitative analysis of H2 adsorption isotherms at 20 K. It may also open new possibilities for enhancing the volumetric capacity of cryogenic hydrogen storage systems for many applications in a coming hydrogen economy.

The research was published in Nature Chemistry.


Paving the way for more efficient hydrogen cars


More information:
Rafael Balderas-Xicohténcatl et al, Formation of a super-dense hydrogen monolayer on mesoporous silica, Nature Chemistry (2022). DOI: 10.1038/s41557-022-01019-7

Provided by
Max-Planck-Institut für Intelligente Systeme

Citation:
Super-dense packing of hydrogen molecules on a surface (2022, September 5)
retrieved 5 September 2022
from https://phys.org/news/2022-09-super-dense-hydrogen-molecules-surface.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

FOLLOW us ON GOOGLE NEWS

 

Read original article here

Denial of responsibility! My droll is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment