At Long Last, Mathematical Proof That Black Holes Are Stable

0

In 1963, the mathematician Roy Kerr found a solution to Einstein’s equations that precisely described the spacetime outside what we now call a rotating black hole. (The term wouldn’t be coined for a few more years.) In the nearly six decades since his achievement, researchers have tried to show that these so-called Kerr black holes are stable. What that means, explained Jérémie Szeftel, a mathematician at Sorbonne University, “is that if I start with something that looks like a Kerr black hole and give it a little bump”—by throwing some gravitational waves at it, for instance—“what you expect, far into the future, is that everything will settle down, and it will once again look exactly like a Kerr solution.”

The opposite situation—a mathematical instability—“would have posed a deep conundrum to theoretical physicists and would have suggested the need to modify, at some fundamental level, Einstein’s theory of gravitation,” said Thibault Damour, a physicist at the Institute of Advanced Scientific Studies in France.

In a 912-page paper posted online on May 30, Szeftel, Elena Giorgi of Columbia University and Sergiu Klainerman of Princeton University have proved that slowly rotating Kerr black holes are indeed stable. The work is the product of a multiyear effort. The entire proof—consisting of the new work, an 800-page paper by Klainerman and Szeftel from 2021, plus three background papers that established various mathematical tools—totals roughly 2,100 pages in all.

The new result “does indeed constitute a milestone in the mathematical development of general relativity,” said Demetrios Christodoulou, a mathematician at the Swiss Federal Institute of Technology Zurich.

Shing-Tung Yau, an emeritus professor at Harvard University who recently moved to Tsinghua University, was similarly laudatory, calling the proof “the first major breakthrough” in this area of general relativity since the early 1990s. “It is a very tough problem,” he said. He did stress, however, that the new paper has not yet undergone peer review. But he called the 2021 paper, which has been approved for publication, both “complete and exciting.”

One reason the question of stability has remained open for so long is that most explicit solutions to Einstein’s equations, such as the one found by Kerr, are stationary, Giorgi said. “These formulas apply to black holes that are just sitting there and never change; those aren’t the black holes we see in nature.” To assess stability, researchers need to subject black holes to minor disturbances and then see what happens to the solutions that describe these objects as time moves forward.

For example, imagine sound waves hitting a wineglass. Almost always, the waves shake the glass a little bit, and then the system settles down. But if someone sings loudly enough and at a pitch that exactly matches the glass’s resonant frequency, the glass could shatter. Giorgi, Klainerman, and Szeftel wondered whether a similar resonance-type phenomenon could happen when a black hole is struck by gravitational waves.

They considered several possible outcomes. A gravitational wave might, for instance, cross the event horizon of a Kerr black hole and enter the interior. The black hole’s mass and rotation could be slightly altered, but the object would still be a black hole characterized by Kerr’s equations. Or the gravitational waves could swirl around the black hole before dissipating in the same way that most sound waves dissipate after encountering a wineglass.

Or they could combine to create havoc or, as Giorgi put it, “God knows what.” The gravitational waves might congregate outside a black hole’s event horizon and concentrate their energy to such an extent that a separate singularity would form. The spacetime outside the black hole would then be so severely distorted that the Kerr solution would no longer prevail. This would be a dramatic sign of instability.

FOLLOW us ON GOOGLE NEWS

 

Read original article here

Denial of responsibility! My droll is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment